Second-order Direct Analysis Method to Code of Practice for the Structural Use of Steel 2011

Alfred Fong

Young Members Group (YMG)

What?

Why?

When?

How?

Commonly used analysis and design method

- 6.6 FIRST-ORDER LINEAR ELASTIC ANALYSIS (FIRST-ORDER INDIRECT ANALYSIS)
- 6.6.1 General

 $P-\Delta$ and $P-\delta$ effects should be checked in the member design by the moment

- 6.7 SECOND-ORDER P-∆-ONLY ELASTIC ANALYSIS (SECOND-ORDER INDIRECT ANALYSIS)
- 6.7.1 General

This analysis method considers the changes in nodal coordinate and sway such that the

- 6.8 SECOND-ORDER P-∆-δ ELASTIC ANALYSIS (SECOND-ORDER DIRECT ANALYSIS)
- 6.8.1 General

Roth the P-Λ and P-δ effects are accounted for in the computation of hending moment in

When can I use first-order linear analysis method ??

Non-sway frames

Except for advanced analysis, a frame is classified as non-sway and the P-∆ effect can be ignored when

$$\lambda_{cr} \geq 10$$

Sway frames

Except for advanced analysis, a frame is classified as sway when

$$10 > \lambda_{cr} \geq 5$$

Sway ultra-sensitive frames

A frame is classified as sway ultra-sensitive when

$$\lambda_{cr} < 5$$

Only second order $P-\Delta-\delta$ or advanced analysis can be used for sway ultra-sensitive frames.

Elastic Critical Load factor

- 1) Deflection method
 - For sway buckling mode of a geometrically regular and rectangular frame

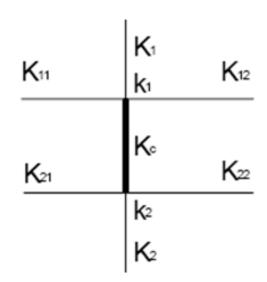
2) Eigenvalue analysis

Effective Length

Effective length of idealized columns

Table 8.6 - Effective length of idealized columns

Flexural Buckling						
Buckled shape of column shown by dashed line						1
Theoretical K value	0.5	0.7	1.0	1.0	2.0	1
Recommended K value when ideal conditions are approximated	0.70	0.85	1.20	1.00	2.10	1.5



Distribution factors:

$$k_1 = \frac{K_c + K_1}{K_c + K_1 + K_{11} + K_{12}}$$
$$k_2 = \frac{K_c + K_2}{K_c + K_2 + K_{21} + K_{22}}$$

Effective Length

How to define the buckling effective length

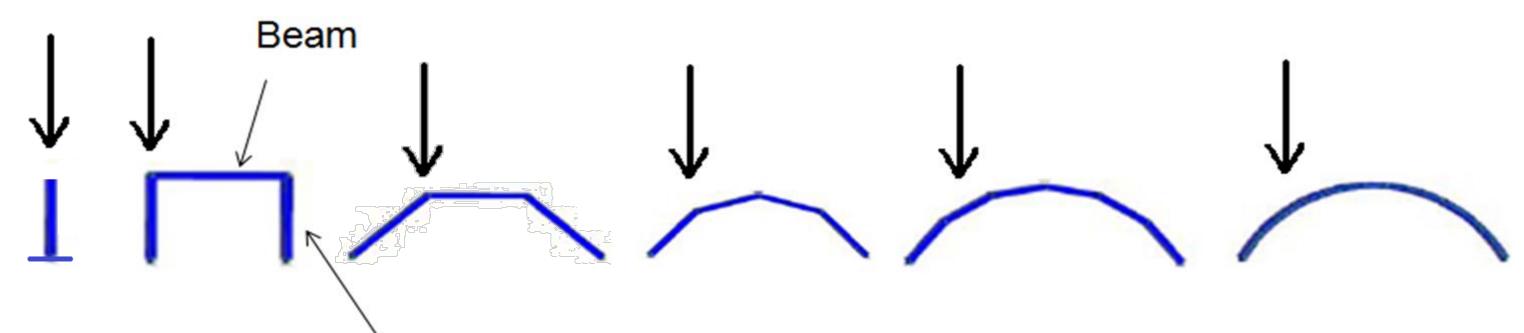
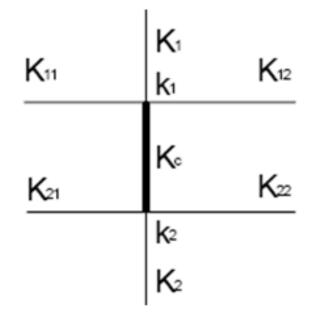


Table 8.6 - Effective length of idealized columns

Flexural Buckling						
Buckled shape of column shown by dashed line						1
Theoretical K value	0.5	0.7	1.0	1.0	2.0	1
Recommended K value when ideal conditions are approximated	0.70	0.85	1.20	1.00	2.10	1.5



Distribution factors:

$$K_1 = \frac{K_c + K_1}{K_c + K_1 + K_{11} + K_{12}}$$

$$K_2 = \frac{K_c + K_2}{K_c + K_2 + K_{21} + K_{22}}$$

Effective Length

Table 8.6 - Effective length of idealized columns

Flexural Buckling						
Buckled shape of column shown by dashed line					→«	1
Theoretical K value	0.5	0.7	1.0	1.0	2.0	1
Recommended K value when ideal conditions are approximated	0.70	0.85	1.20	1.00	2.10	1.5

$$\begin{array}{c|cccc} K_{11} & K_{1} & \\ & k_{1} & K_{12} \\ \hline & K_{2} & \\ & K_{22} & \\ & K_{2} & \\ & K_{2} & \\ & K_{2} & \\ \end{array}$$

Distribution factors:

$$k_1 = \frac{K_c + K_1}{K_c + K_1 + K_{11} + K_{12}}$$
$$k_2 = \frac{K_c + K_2}{K_c + K_2 + K_{21} + K_{22}}$$

Moment Amplification for sway frames

$$\frac{\lambda_{cr}}{\lambda_{cr}-1}$$
:

Maximum slenderness ratio<200

What is Buckling?

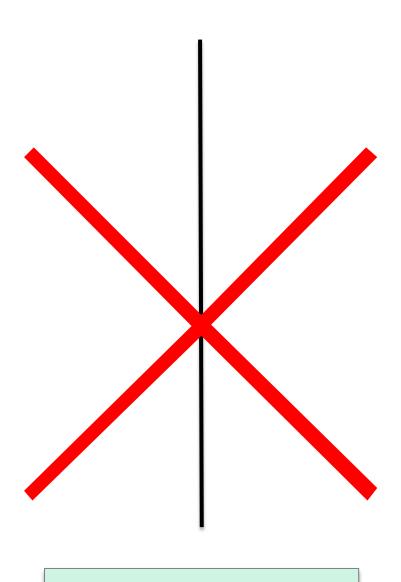
Buckling behavior

Project: BENCHMARK EXAMPLE□

Unit: kN, m

Analysis Case(3), LoadStage(0), Load Cycle(10), Load Factor(57.23)

- > P-δ Moment
 - Member initial imperfection

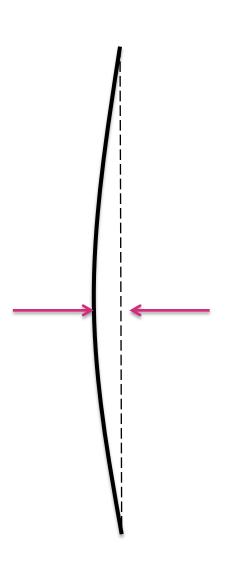


Perfect member

P-δ Moment

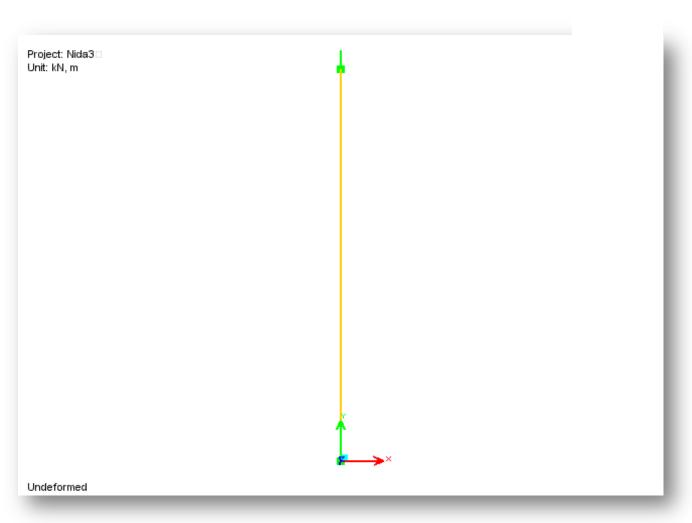
- Member initial imperfection

Buckling curves referenced in Table 8.7	$\frac{e_0}{L}$ to be used in Second-order P-Δ-δ elastic analysis
a ₀	1/550
a	1/500
b	1/400
С	1/300
d	1/200



Member Imperfection

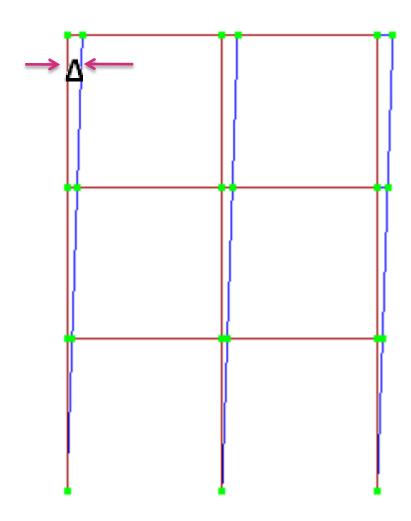
- > P-δ Moment
 - Member initial imperfection + Member deformation under load



Use effective length and buckling reduction factor in linear analysis

P-Δ Moment

-Structural global imperfection

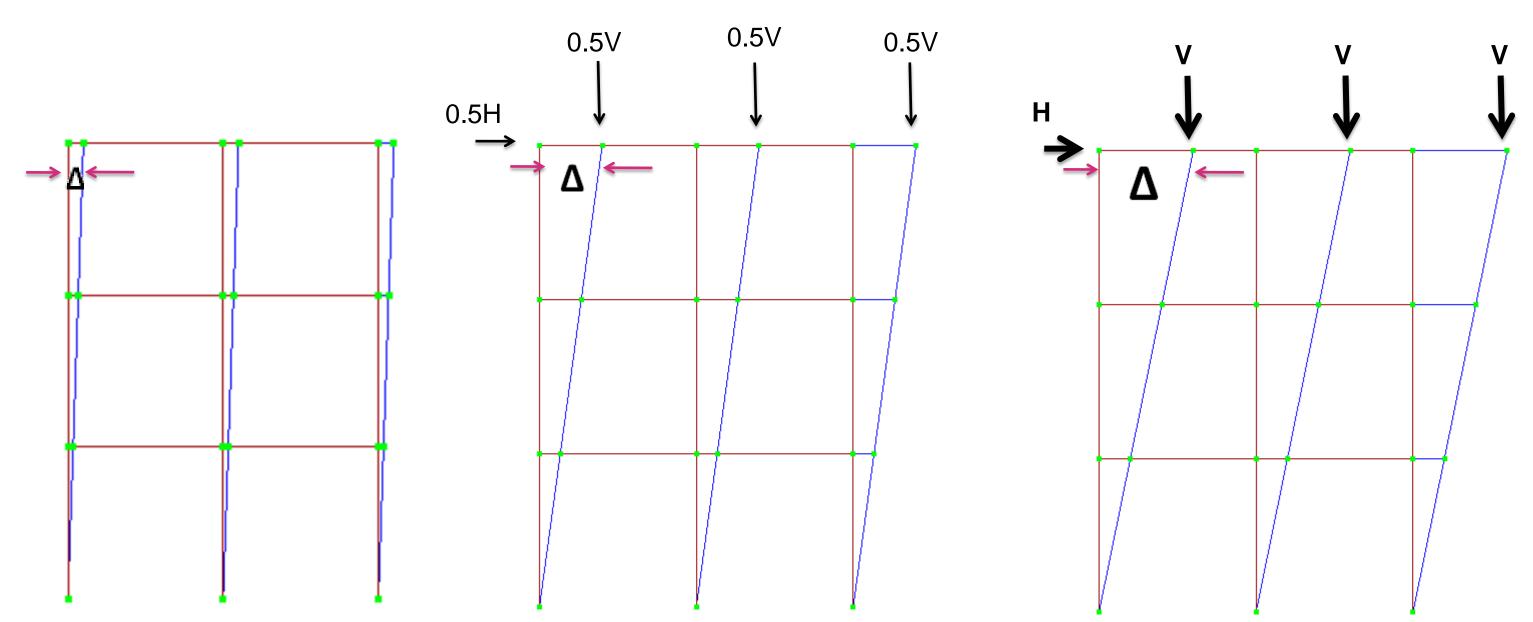


- Structural global imperfection
 - Shape of imperfection
 - 1) Notional horizontal force method
 - Suitable for regular structures
 - 2) Elastic buckling mode
 - Applicable for all structures

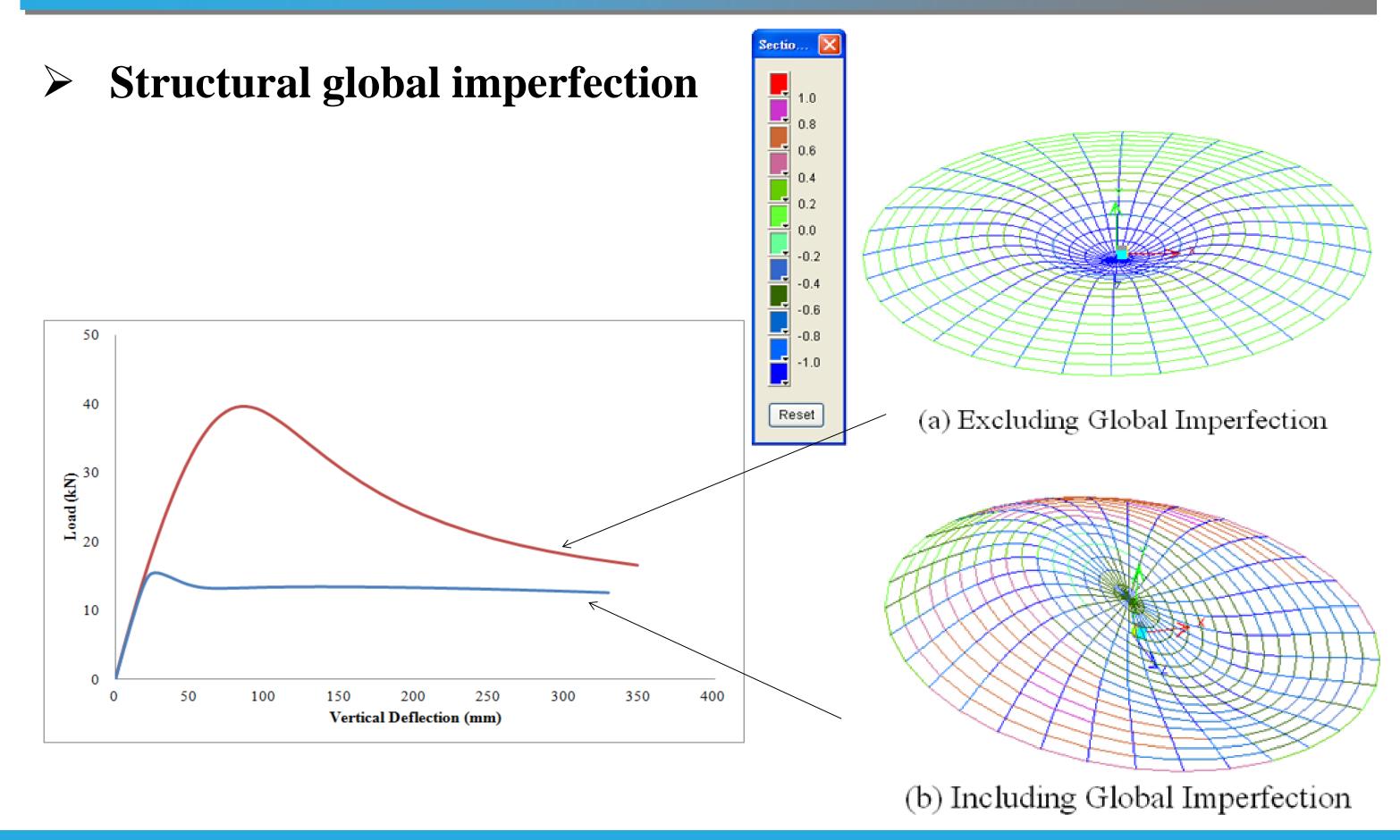
- Value of imperfection
 - Storey height/200

P-Δ Moment

-Structural global imperfection + Nodal geometric change



Use in Moment Amplification factor in linear analysis



Commonly Used Analysis and Design Method

- 6.6 FIRST-ORDER LINEAR ELASTIC ANALYSIS (FIRST-ORDER INDIRECT ANALYSIS)
- 6.6.1 General

 $P-\Delta$ and $P-\delta$ effects should be checked in the member design by the moment

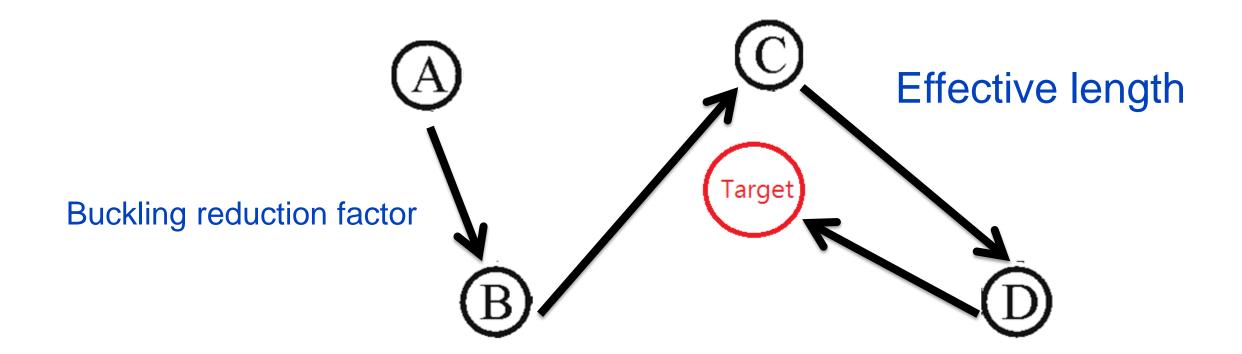
- 6.7 SECOND-ORDER P-∆-ONLY ELASTIC ANALYSIS (SECOND-ORDER INDIRECT ANALYSIS)
- 6.7.1 General

This analysis method considers the changes in nodal coordinate and sway such that the

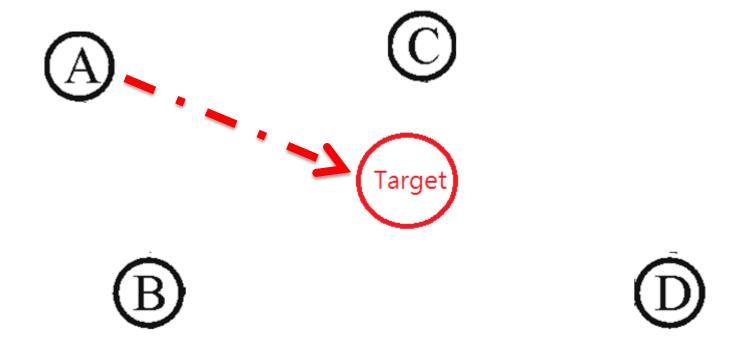
- 6.8 SECOND-ORDER P-Δ-δ ELASTIC ANALYSIS (SECOND-ORDER DIRECT ANALYSIS)
- 6.8.1 General

Roth the P-Λ and P-δ effects are accounted for in the computation of hending moment in

• What's second-order INDIRECT (P- Δ) analysis?



• What's second-order DIRECT (P- Δ - δ) analysis?



• What do I NEED for second-order direct analysis?

Member imperfection

Buckling curves referenced in Table 8.7	$\frac{e_0}{L}$ to be used in Second-order P-Δ-δ elastic analysis
a ₀	1/550
a	1/500
b	1/400
С	1/300
d	1/200

Frame imperfect

Frame imperfections

The effects of imperfections for typical structures shall be incorporated in frame analysis using an equivalent geometric imperfection in Equation 6.7 as an alternative to the <u>notional horizontal force</u> in clause 2.5.8,

 $\Delta = h / 200$

Section capacity check

$$\frac{F_c}{A_g p_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} = \frac{F_c}{A_g p_y} + \frac{\overline{M}_x + F_c(\Delta_x + \delta_x)}{M_{cx}} + \frac{\overline{M}_y + F_c(\Delta_y + \delta_y)}{M_{cy}} \le 1$$

$$\left(\frac{M_x}{M_{rx}}\right)^{z_1} + \left(\frac{M_y}{M_{ry}}\right)^{z_2} = \left(\frac{\overline{M}_x + F_c(\Delta_x + S_x)}{M_{rx}}\right)^{z_1} + \left(\frac{\overline{M}_y + F_c(\Delta_y + S_y)}{M_{ry}}\right)^{z_2} \le 1$$

Comment questions

Second-order direct analysis ONLY used in HK Steel Code?

Comment questions

Recommended by many design codes

Comment questions

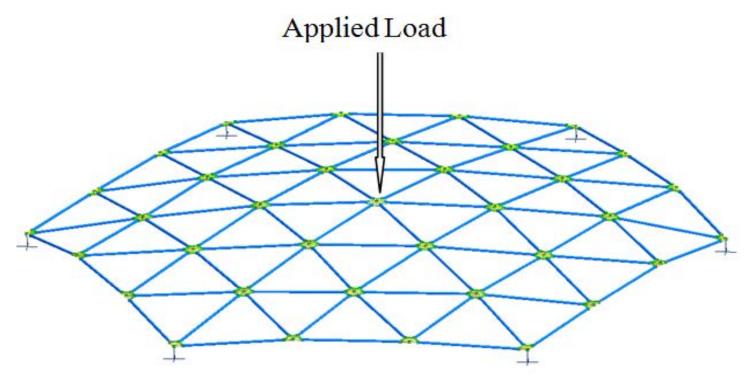
Second-order direct analysis ONLY used in HK Steel Code?

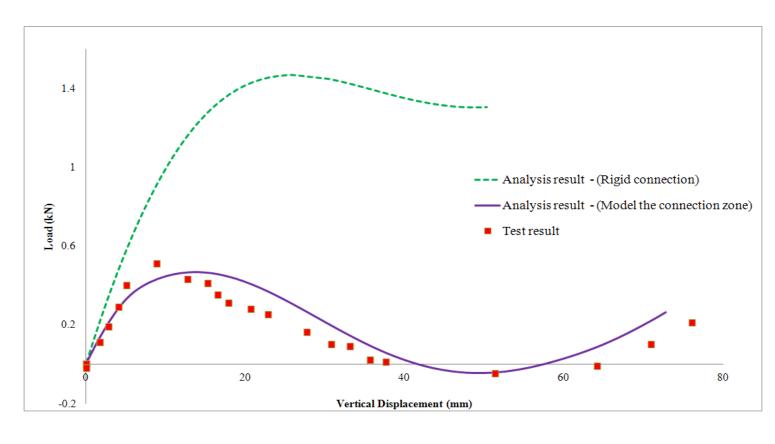
Second-order analysis gives a more economic/conservative design?

Can I add the reaction forces from each load cases?

Anything miss in linear analysis?

Snap-through buckling problem





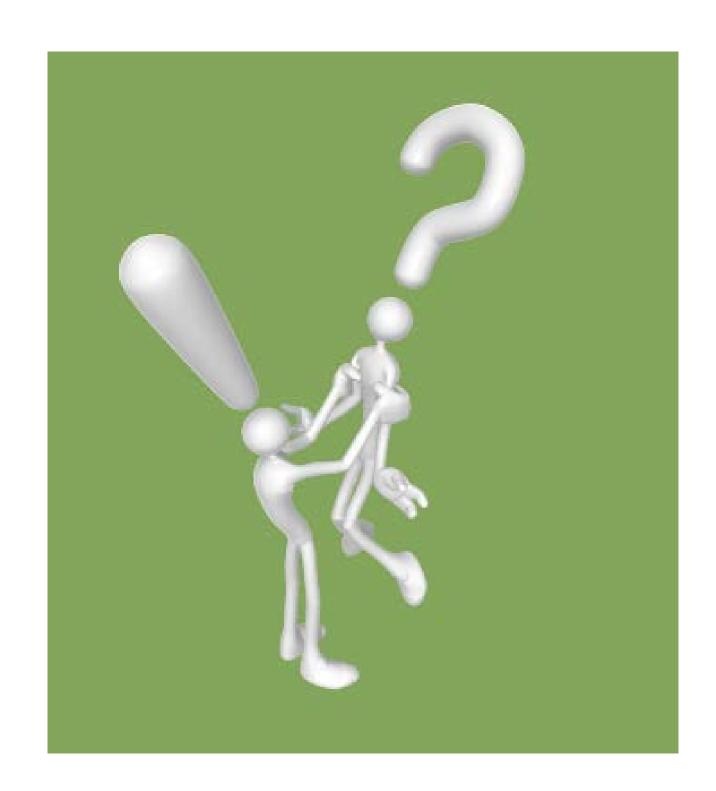
Conclusion

What?

Why?

When?

How?



Thank you

Young Members Group (YMG)

Hong Kong Institute of Steel Constriction (HKISC)